Выбор аккумуляторов для радиостанций

 

NiCd аккумуляторы для радиостанций

Щелочные NiCd аккумуляторы были изобретены еще в 1899 г. Вальдмаром Юнгнером. Однако материалы для производства таких аккумуляторов стоили дороже материалов для производства аккумуляторов других типов, и поэтому в то время широкого использования они не нашли. Только в 1932 г. была разработана технология нанесения активного материала пластин путем осаждения на губчатый (пористый) покрытый никелем электрод. А в 1947 г. стали известны работы над созданием герметичных никель-кадмиевых аккумуляторов, в которых была осуществлена возможность рекомбинации газов, выделявшихся в процессе заряда, без их отвода. Конечным результатом этих разработок и стало появление герметичных никель-кадмиевых аккумуляторных батарей, используемых и в настоящее время.

NiCd аккумуляторы любят быстрый заряд, медленный разряд до состояния полного разряда и подзарядку импульсами тока, в то время как батареи других типов предпочитают частичный разряд и умеренные токи нагрузки. Это тип аккумуляторов, которые способны работать в самых жестких условиях.

Для никель-кадмиевых аккумуляторов крайне необходим полный периодический разряд: если его не делать, на пластинах элементов формируются крупные кристаллы, значительно снижающие их емкость (так называемый "эффект памяти").

Преимущества NiCd аккумуляторных батарей:
• возможность быстрого и простого заряда, даже после длительного хранения аккумулятора;
• большое количество циклов заряд/разряд: при правильной эксплуатации - более 1000 циклов;
• хорошая нагрузочная способность и возможность эксплуатации при низких температурах;
• продолжительные сроки хранения при любой степени заряда;
• сохранение стандартной емкости при низких температурах;
• наибольшая приспособленность для использования в жестких условиях эксплуатации;
• низкая стоимость;

Недостатки NiCd аккумуляторных батарей:
• относительно низкая по сравнению с другими типами аккумуляторных батарей энергетическая плотность;
• присущий этим аккумуляторам эффект памяти и необходимость проведения периодических работ по его устранению;
• токсичность применяемых материалов, что отрицательно сказывается на экологии, и некоторые страны ограничивают использование аккумуляторов этого типа;
• относительно высокий саморазряд - после хранения неоходим цикл заряда.

NiMh аккумуляторы в последние десятилетия существенно потеснили NiCd во многих областях техники. Особенно широко они применяются в автономных источниках питания портативной аппаратуры, где увеличение их удельных характеристик в 1,5-2 раза по сравнению с NiCd привело к улучшению потребительских свойств этой аппаратуры.

NiCd и NiMH источники тока, однако, имеют много общего, так как именно положительный оксидно-никелевый электрод определяет как разрядную емкость аккумулятора, так и в существенной степени его свойства.

Технические характеристики NiCd аккумуляторов:

  • Рабочая температура: −50…+60 °С
  • Срок службы: 500---1000 циклов

NiMh аккумуляторы для радиостанций

Разработка NiMh аккумуляторных батарей началась в 50-70-х гг. В результате был создан новый способ сохранения водорода в никель-водородных батареях, которые использовались в космических аппаратах.

В новом элементе водород накапливался в сплавах определенных металлов. Сплавы, абсорбирующие водород в объеме в 1000 раз больше их собственного объема, были найдены в 1960-х годах. Эти сплавы состоят из двух или нескольких металлов, один из которых абсорбирует водород, а другой является катализатором, способствующим диффузии атомов водорода в решетку металла. Количество возможных комбинаций применяемых металлов практически не ограничено, что дает возможность оптимизировать свойства сплава. Для создания NiMH аккумуляторов потребовалось создание сплавов, работоспособных при малом давлении водорода и комнатной температуре. В настоящее время работа по созданию новых сплавов и технологий их обработки продолжается во всем мире. Сплавы никеля с металлами редкоземельной группы могут обеспечить до 2000 циклов заряда-разряда аккумулятора при понижении емкости отрицательного электрода не более чем на 30 %.

Первый NiMH аккумулятор, в котором в качестве основного активного материала металл-гидридного электрода применялся сплав LaNi5, был запатентован Биллом в 1975 г. В ранних экспериментах с металл-гидридными сплавами, NiMh аккумуляторы работали нестабильно, и требуемой емкости батарей достичь не получалось. Поэтому промышленное использование NiMH аккумуляторов началось только в середине 80-х годов после создания сплава La-Ni-Co, позволяющего электро-химически обратимо абсорбировать водород на протяжении более 100 циклов. С тех пор конструкция NiMH аккумуляторных батарей непрерывно совершенствовалась в сторону увеличения их энергетической плотности.

Замена отрицательного электрода позволила повысить в 1,3-2 раза закладку активных масс положительного электрода, который и определяет емкость аккумулятора. Поэтому NiMH аккумуляторы имеют по сравнению с NiCd аккумуляторами значительно более высокими удельными энергетическими характеристиками.

Успех распространению NiMh аккумуляторных батарей обеспечили, высокая энергетическая плотность и нетоксичностъ материалов, используемых при их производстве.

Ni-MH аккумуляторы имеют улучшенную энергоемкость и энергоплотность, увеличенную емкость (почти на 30%) при тех же размерах, что и NiCd.

NiMh аккумуляторы держат заявленный уровень напряжения до полного окончания заряда.

Срок службы аккумуляторов такого типа составляет от 300 до 500 циклов заряда-разряд. "Эффект памяти" практически отсутствует - это говорит о возможности заряда не полностью разряженного аккумулятора, в течение нескольких дней от момента последнего использования. Если прошло более 3 дней то аккумулятор необходимо разрядить .

И самое главное! Аккумуляторы этого типа имеют рабочую температуру от -60 до +50 градусов Цельсия, что несомненно является плюсом для зимних условий эксплуатации. Хранить Ni-MH аккумулятор для рации желательно заряженным.

Технические характеристики Ni-MH аккумуляторов:

  • Рабочая температура: −60…+55 °С
  • Срок службы: 500—2000 циклов

LiIon аккумуляторы для радиостанций

Первичные элементы ("батарейки") с литиевым анодом появились в начале 70-х годов 20 века и быстро нашли применение благодаря большой удельной энергии и другим достоинствам. Таким образом, было осуществлено давнее стремление создать химический источник тока с наиболее активным восстановителем - щелочным металлом, что позволило резко повысить как рабочее напряжение аккумулятора, так и его удельную энергию. Если разработка первичных элементов с литиевым анодом увенчалась сравнительно быстрым успехом и такие элементы прочно заняли свое место как источники питания портативной аппаратуры, то создание литиевых аккумуляторов натолкнулось на принципиальные трудности, преодоление которых потребовало более 20 лет.

После множества испытаний в течение 1980-х годов выяснилось, что проблема литиевых аккумуляторов закручена вокруг литиевых электродов. Точнее, вокруг активности лития: процессы, происходившие при эксплуатации, в конце концов, приводили к бурной реакция, получившей название "вентиляция с выбросом пламени". В 1991 г. на заводы-изготовители было отозвано большое количество литиевых аккумуляторных батарей, которые впервые использовали в качестве источника питания мобильных телефонов. Причина - при разговоре, когда потребляемый ток максимален, из аккумуляторной батареи происходил выброс пламени, обжигавший лицо пользователю мобильного телефона.

Из-за свойственной металлическому литию нестабильности, особенно в процессе заряда, исследования сдвинулись в область создания аккумулятора без применения Li, но с использованием его ионов. Хотя литий-ионные аккумуляторы обеспечивают незначительно меньшую энергетическую плотность, чем литиевые аккумуляторы, тем не менее Li-ion аккумуляторы безопасны при обеспечении правильных режимов заряда и разряда.

Самый распространеный тип аккумуляторов в настоящее время, они производятся практически для всех портативных радиостанций.

Li-ion аккумуляторы определенно опережают и Ni-Cd и Ni-MH по своим эксплутационным параметрам. Они обладают более высокой энергоемкостью, саморазряд практически отсутствует.

Отсутствие эффекта памяти  позволяет заряжать Li-ion аккумуляторы вне зависимости от уровня их заряда причем полный разряд может уменьшить его ресурс или вывести из строя аккумулятор.

Хранить такие аккумуляторы рекомендуют при 40% уровне заряда, но в любом случае они сильно подвержены "старению", т.е. емкость аккумулятора постепенно теряется - средний срок службы - 5-6 лет.

Технические характеристики Li-Ion аккумулятора:

  • Число циклов заряд/разряд до потери 20% ёмкости: 500—1000
  • Время быстрого заряда: 2-4 часа
  • Саморазряд при комнатной температуре: 5-10% в месяц
  • Диапазон рабочих температур: −20 — +60 °C 

Li-pol аккумуляторы для радиостанций

Возможность замены жидкого органического электролита на полимерный, при котором должна снизиться вероятность его утечек и увеличиться безопасность работы литий-ионного аккумулятора, изучалась с самого начала коммерциализации этих источников тока.

В основе идеи литий-полимерного аккумулятора (Li-pol) лежит открытое явление перехода некоторых полимеров в полупроводниковое состояние в результате внедрения в них ионов электролита. Проводимость полимеров при этом увеличивается более чем на порядок. Усилия исследователей были направлены на поиск полимерных электролитов как для литий-ионных аккумуляторов, так и для аккумуляторов с металлическим литием, теоретически возможная плотность энергии которых в несколько раз больше, чем у литий-ионных аккумуляторов.

К настоящему времени разработаны и серийно изготавливаются литиевые источники тока с электролитами, которые могут быть подразделены на три группы:
- сухие полимерные электролиты (чаще всего на базе полиэтиленоксида, в который вводятся различные соли Li);
- гель-полимерные гомогенные электролиты, которые образуются при внедрении в полимер (или смесь полимеров) с солями Li пластификатора-растворителя;
- неводные растворы солей Li, сорбированные в микропористой полимерной матрице.

По сравнению с жидкими электролитами в литий-ионных аккумуляторах, полимерные электролиты имеют меньшую ионную проводимость, которая к тому же понижается при температуре ниже нуля. Поэтому проблема разработок Li-pol аккумуляторов состояла не только в поиске иммобилизированного электролита с достаточно высокой проводимостью, совместимого с электродными материалами, но и в расширении температурного диапазона Li-pol аккумуляторов.

Современные литий-полимерные аккумуляторы обеспечивают удельные характеристики, сравнимые с характеристиками литий-ионных аккумуляторов. Благодаря отсутствию жидкого электролита они более безопасны в использовании, чем перезаряжаемые литиевые источники тока. Li-pol аккумуляторы компактны и могут быть выполнены в любой конфигурации. Их контейнер может быть выполнен из металлизированного полимера.

Рабочие плотности тока, однако, незначительны, и электрические характеристики Li-pol аккумуляторов заметно ухудшаются при понижении температуры из-за кристаллизации полимера.

С гель-полимерным электролитом разрабатывают аккумуляторы и литий-ионные, и с металлическим анодом. Достигнутые довольно большие плотности тока и расширение температурного интервала работы позволяют использовать такие аккумуляторы для широкого круга портативной аппаратуры, сотовых телефонов, ноутбуков, цифровой фото-техники и т.д.

Аккумуляторы с гель-полимерным электролитом производят многие компании во всем мире. Электродные материалы, рецептуры электролита и технологии изготовления Li-pol аккумуляторов разных компаний значительно различаются. Их характеристики также разнообразны.

Все разработчики отмечают, что на качество Li-pol аккумуляторов и стабильность их работы сильно воздействует однородность полимера, на которую оказывают влияние как соотношение компонентов электролита, так и температура полимеризации.

Учитывая, что уже реально показаны возможности создания литий-полимерных аккумуляторов в широком диапазоне емкостей, и тот факт, что при всех стандартных тестах на безопасность использования (перезаряд, форсированный разряд, короткое замыкание, вибрация, раздавливание и протыкание гвоздем) Li-pol аккумуляторы имеют существенно более высокие показатели по сравнению с литий-ионными аккумуляторами с жидким электролитом. Перспективы серьезного расширения производства Li-pol аккумуляторов и использования их в самых разнообразных областях техники не вызывают сомнений.

С появлением элементов литий-полимерных аккумуляторных батарей толщиной всего в 1 мм перед конструкторами электонных устройств открылись новые возможности в отношении конечной формы и размеров новой аппаратуры. Были убраны многие ограничения касательно микроминиатюризации радиоэлектронных устройств.

Иногда для снижения внутреннего сопротивления Li-pol батарей, используют добавку гелиевого электролита. Большинство литий-полимерных батарей, применяемых для питания мобильных телефонов, на самом деле являются гибридными, представляющими собой нечто среднее между литий-ионными и литий-полимерными аккумуляторами, и в них используется гелиевый электролит.

Какая же разница между литий-ионными и литий-полимерными аккумуляторными батареями с гелиевым электролитом? Хотя их характеристики и близки, в литий-полимерных батареях вместо сепараторов используется твердый электролит. Добавленный в них гелиевый электролит предназначен просто для улучшения ионообменных процессов и, таким образом, для понижения внутреннего сопротивления.

Были проведены сравнительные испытания на безопасность двух типов призматических литий-ионных аккумуляторов: с жидким и гель-полимерным электролитами (см. таблицу). При этом не принималось особых мер обеспечения безопасности аккумуляторов. Аккумуляторы испытывались проколом иглой, нагревом до 200 °С, коротким замыканием и очень высоким перезарядом (до 600 %). Как следует из таблицы, безопасность литий-ионных аккумуляторов с полимерным электролитом гораздо выше безопасности аккумуляторов с жидким электролитом.

Результаты испытаний аккумуляторов на безопасность
Вид испытаний Аккумулятор с гель-полимерным электролитом Аккумулятор с житким электролитом
Прокол иглой Не было изменений Взрыв, дым, протечка электролита, повышение температуры до 250°С
Нагрев до 200°С Не было изменений Взрыв, протечка электролита
Ток короткого замыкания Не было изменений Протечка электролита, повышение температуры на 100°С
Перезаряд (600%) Вздутие Взрыв, протечка электролита, повышение температуры на 100°С

Заряд литий-полимерных аккумуляторов

Процесс заряда литий-полимерных аккумуляторных батарей подобен заряду литий-ионных аккумуляторных батарей. Литий-полимерные батареи с гелевым электролитом чаще всего классифицируют как литий-ионные, и их процессы заряда аналогичны.

В настоящее время большая часть литий-ионных аккумуляторов коммерческого назначения на самом деле представляет собой литий-полимерные аккумуляторы с гелиевым электролитом, и литий-полимерные батареи с сухим электролитом постепенно будут ими вытеснены.

 

 

Последние материалы:

Ваше морское судно использует радиосвязь? В этой статье мы узнаем какая антенна лучше всего подходит вам для качественной радиосвязи и безопасного хождения.
Наиболее распространённая терминология с которой вы можете столкнуться при покупке гарнитуры. Понимание сути терминов поможет сделать правильный выбор.